
Bayezian's Approach to Breast Cancer Survival Prediction: Leveraging AI and
Machine Learning on Genomic Data While Navigating Pitfalls

Introduction:

Breast cancer is a heterogeneous and complex disease and cases are rising globally, with a
reported 2.3 million new cases (Kashyap et al, 2022). Due to the complexity of the disease, it
is difficult to treat with a blanket approach. Common therapies are dependent on the
molecular subtype of breast cancer tissue, defined by specific genetic expression profiles.
There are four common subtypes: luminal A and B, HER2+/ER-, and basal/ triple negative
(Johnson et al, 2021). Luminal A is the most common subtype, accounting for ~70% of
tumours. The basal subtype has the worst prognosis largely due to the lack of targeted
therapies and its aggressive nature (Bhushan et al, 2021). For a full characterisation of these
subtypes, refer to appendix A. Information on cancer subtype is being used to aid in the
clinical decision pathway for treatments and prognosis.

Machine learning and artificial intelligence (AI) have extraordinary potential to support
decision making in clinical practice by generating insights from large datasets. AI has
already been utilised to aid imaging tools for breast cancer tumours for improved patient
diagnosis, as well as aiding clinical practitioners in the decision process for treatment
pathways (Bernardo et al, 2019; Corti et al, 2022). This potential is propagated by the
adoption of electronic health records (EHR) from healthcare systems globally, with 96%
reported use in the US in 2017, which contain information on diagnoses, treatments, and
reported patient outcomes (Giordano et al, 2021). EHR have been utilised to create data
warehouses, empowering researchers to train and test machine learning models on evolving
real world data. These advancements allow for the adoption of personalised healthcare, so
the needs of each individual are best accounted for, reducing mortality in patients.

Bayezian is combining data engineering techniques with regression machine learning
models to predict breast cancer survival durations in patients. We used the Molecular
Taxonomy of Breast Cancer International Consortium (METABRIC) database, containing
information on genetic mutations, gene expression levels, tumour type, tumour stage, and
treatment from 1,980 patients. In doing so, we are developing a tool that may help clinical
practitioners decide on the best course of treatment to maximise prognosis in breast cancer
patients, given personal medical history and genetic makeup. Bayezian sees this tool as a
personalised approach to clinical decision making that puts people at the heart of patient
care.

Despite advances in AI and its adoption into the clinical decision making process, Bayezian
understands that many disadvantages remain. These stem from biases within the models,
assumptions that some models make surrounding genomic data, and issues in data
preparation. The risk associated with these, particularly in a clinical setting, is that the
models do not meet the level of clinical viability that is demanded for patient care (Kelly et al,
2019). This paper will discuss these pitfalls in detail when applied to breast cancer
survivability predictions. Additionally, it discusses how Bayezian is navigating these pitfalls
and incorporating a robust approach to AI driven clinical decision making.



Distributional differences:

Within a dataset, disparities in distributions emerge when distinct variations in measured
values coexist. Within genomic data, this phenomenon can arise from varying expression
profiles of different biological structures, as demonstrated within the gene expression profiles
of the breast cancer subtypes; refer to appendix A. In turn, challenges arise with maintaining
consistent distributions between test, train, and validation datasets, as well as producing
accurate predictions. Haque et al (2012) showed that HER2+/ER- and luminal B have a
two-fold increase of mortality compared to luminal A, exemplifying how these distribution
patterns have a direct impact on patient survivability outcomes. Therefore, it is imperative
that these distributions are labelled with the associated explanatory variable, so the model
can effectively account for these nuances. Our model retains the cancer subtype in order to
account for this and increase the accuracy of our predictions.

Likewise, the presence of missing data can also contribute to distributional issues, due to
the omission of data points lying between distributions. Additionally, data may be omitted
within distributions, resulting in underrepresented groups. These scenarios diminish the
statistical power of the model and amplifies its risk of bias (Marino et al, 2021). The
intricacies of managing missing data are indeed challenging, and a universal approach to
dealing with it does not exist. It is best practice to use complete datasets, although even the
largest datasets are bound to have a degree of missingness. Our dataset boasts a
completeness of over 95%, but a fraction of missingness persists. Removing outliers
eliminated some of the missing data and an interpolation method was employed to fill in the
remaining gaps. We used this over replacement methods that can result in skewed data.
One method is to replace missing values with zeros, but this can cause the data to skew
towards zero, altering its distribution and variance. Another relies on replacing data with
random values, but unless the data is normally distributed, random groups of data may be
artifactually inflated. Equally, imputation methods may inflate the mean group, causing a
narrower distribution. Our method replaces missing values with an average of the value
pre/proceeding it.The pre/ post- manipulated distributions were visualised for approximate
equivalence to mitigate the marginal risk of bias. For a full visualisation of outliers and
missing data, refer to appendices B and C, respectively. In turn, we’ve engineered a dataset
that can be utilised to train a robust model for a reliable clinical calling.

Confounding data and overfitting:

Single genes can be involved in multiple processes and have many interacting partners
(Stoney et al, 2018). Therefore, a gene may show correlation to a process, but is in fact
regulated by another gene that is directly involved and the correlation observed is a
confounding factor. Venet et al. (2011) showed there was a significant correlation between
genes linked to social defeat obtained from mice brains and breast cancer survival outcome,
demonstrating this concept. Whilst these may give accurate predictions, these may not be
used to aid important decisions on patient care, such as treatments that may target specific
genes involved in breast cancer. Equally, retaining these confounding variables can cause
overfitting due to an overly complex dataset, so it is best practice to only retain variables
directly involved in the process the model is trying to predict outcomes on.



In order to determine the most important features, Bayezian has drawn upon their domain
expertise to distinguish the confounding variables within our dataset. Patients harbouring
the BRCA1 mutation exhibit a significant reduction in their 10-year survival rate, as
demonstrated by Huszno et al. (2019). Consequently, this mutation is associated with an
elevated mortality rate in comparison to individuals without it. It has been determined that
the synergistic use of anthracycline and taxane reduced mortality by 46% in mutation
carriers (Godet and Gilkes, 2011). Here lies an example of how specific treatments may
increase a patient's survival outcomes and vital information to include in a model such as
ours, rather than confounding variables. Where it is difficult to characterise the confounding
variables, particularly where data contains genes of unknown function, statistical methods
may be employed to deal with this.

Addressing this within our dataset, we applied principal component analysis as a robust
approach. This method serves the dual purpose of data preprocessing and feature
reduction. It combines variables and weights them according to the features that explain the
majority of the variance. Consequently, this strategy retains the bulk of the valuable
information while simultaneously streamlining the dataset. We retained 537 principal
components, which describes 80% of the variance and reduces the dataset by almost a third.
This also generates uncorrelated variables to mitigate the confounding effects, as elucidated
by Karamizadeh et al. (2013), when applied to making predictions on breast cancer
prognosis.

Correlated data:

In machine learning regression models, the assumption of feature independence often falls
short when dealing with genomic data, resulting in inaccuracies within model predictions
due to correlated variables. Genes involved in the same process regulate each other,
determining their respective expression levels. This means that these genes share
interdependence. For example, increased BRCA1 expression, a gene involved in tumour
suppression, is produced by elevated levels of the p63 gene when there is a break in the
DNA (Crawford et al, 2010). A BRCA1 mutation will halt this process as the gene no longer
functions as expected.This carries the risk of an individual being diagnosed with breast
cancer, and carriers see a 72.5% diagnosis rate (Momozawa et al, 2022). With over 400
gene variants in the dataset, the likelihood of interdependence is high.

Bayezian has implemented XGBoost in our tool, harnessing the power of a boosted decision
tree model adept at managing the complexities of multicollinearity. It uses a weak learner
approach that relies on a simplified model, weighting the best performing features higher
than underperforming ones. Co-linear variables notoriously result in models
underperforming, so these would be weighted at or close to zero. Such information is
iteratively fed into the next weak learner to increase its predictive power, until the error of the
overall model is as close to zero as possible. The use of XGBoost on genomic data was
corroborated by Prastyo et al (2020), who used machine learning algorithms to detect and
classify breast cancer tumours. XGBoost performed the best with an F1-score of 98.51%. In
our model, XGBoost performed best, seeing an improvement of 49.1 months in the root
mean squared error (RMSE), compared to that of a standard linear regression model. For a
full synopsis of models employed, refer to appendix D.



Conclusions and future outlook:

The incorporation of AI into the analysis of genomic data introduces challenges that
complicate the construction of effective models. Furthermore, when deploying these models
within clinical settings, as envisioned in our proposal, their accuracy and robustness become
paramount. Bayezian recognizes the profound impact that decisions made regarding
healthcare can have on individuals' lives. Consequently, the tools employed to facilitate such
decisions must exhibit unwavering reliability. In this endeavour, we have demonstrated a
comprehensive understanding of the potential pitfalls associated with AI in genomics, while
also showcasing strategies to develop resilient tools for analysing breast cancer survival
durations.

At present, our most advanced model achieves a RMSE of 55 months. While our application
has yet to attain a clinically viable standard, it is evident that we have successfully navigated
the complexities of data processing and model application, accounting for the intricacies
inherent in genomic data. Notably, our dataset encompasses a substantial volume of
information, posing a challenge for conventional machine learning models to effectively
extract meaningful signals from the surrounding noise. Recognising the need to retain as
much explanatory power as possible, we are inclined to explore the potential of deep
learning algorithms. These techniques, characterised by multiple layers of data processing,
hold the promise of enhanced accuracy in prediction by efficiently discerning the signal
amidst the noise.

In essence, Bayezian is dedicated to the development of a pivotal tool that holds the
potential to extend the lives of breast cancer patients. We embrace the multifaceted
challenges posed by AI in genomics and remain committed to harnessing the power of
advanced algorithms to surmount them, ultimately delivering a tool that empowers clinicians
with dependable insights for improved patient outcomes.
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Appendices:

Appendix A:

Table 1:

A full characterisation of breast cancer subtypes and their associated prognosis. Each
subtype expresses different proteins that may be targeted for targeted hormonal therapies.
This may not be applied to the basal subtype due to the lack of expression of these proteins
(Bhushan et al, 2021; Johnson et al, 2021).

Subtype Gene Expression Profile Prognosis

Luminal A ● Estrogen receptor + (ER+)
● Human epidermal growth

factor - (HER2-)
● Low levels of protein KI-67

Excellent prognosis due to low
proliferation rate and existence
of targeted therapies.

Luminal B ● Estrogen receptor + (ER+)
● Human epidermal growth

factor + or - (HER2+/-)
● Elevated levels of protein

KI-67

Good prognosis due to
targeted therapies, but slightly
worse than luminal B due to
elevated protein KI-67 causing
faster cell proliferation and
aggressiveness.

HER2+/ER- ● Estrogen receptor - (ER-)
● Human epidermal growth

factor + (HER2+)

Good prognosis due to
targeted therapies, although it
is associated with higher
proliferation rates than luminal
cancers, making it more
aggressive.

Basal/ Triple negative ● Estrogen receptor - (ER-)
● Progesterone receptor -

(PR-)
● Human epidermal growth

factor - (HER2-)

Worst prognosis due to no
availability for targeted
therapies and aggressive
nature.



Appendix B:

Fig 1:

A schematic indicating outliers in gene expression values for stat5b and tcs1 gene
expression levels. The outliers are shown before and after removal. Outliers were removed
where they had a z-score greater than three, retaining 95% of the data. Distributions
retained relative equivalence, indicating success in outlier removal.



Appendix C:

Fig 2:

a:

b:



c:

d:

A schematic indicating distributions of data before and after manipulation of missing values.
Tumour size (fig. 2d) had 11 missing values, so the subjects with these missing values were
dropped as little information would be lost from the dataset. The others were interpolated to
retain the bulk of information from these subjects and will increase the predictive power of
the models used.



Appendix D:

Table 2:

A full description of models used for the prediction of breast cancer survival durations. The
Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) database was
employed, with XGBoost indicating the best performance.

Machine Learning
Model

Statistical dimensionality
reduction employed

Root Mean Squared Error
(RMSE) / months

Linear regression None 104.9

Lasso regression Incorporated in model 73.6

Ridge regression None 66.8

Ridge regression Principal component analysis 66.6

Polynomial regression Principal component analysis (PCA) 216.2

XGBoost Incorporated in model 55.8


